residue. The ammonium solution was extracted with ether, the ethereal extract was dried with $\rm Na_2SO_4$, the ether was distilled off, and the residue was distilled in vacuo to afford 4.4 g of 7d. 4-Isobutyryl-2-methyl-2-methoxy-8-piperidinooct-6-yne-3-one (7b), 4-isobutyryl-2-methyl-2-methoxy-8-morpholinooct-6-yne-3-one (7c), 2-methyl-2-methoxy-8-morpholino-4-pivaloyloct-6-yne-3-one (7e), 4-benzoyl-2-methyl-2-methoxy-8-diethyl-aminooct-6-yne-3-one (7f), and 4-benzoyl-2-methyl-2-methoxy'-8-morpholinooct-6-yne-3-one (7g) were synthesized by similar procedures.

4-Isobutyryl-2-methyl-2-methoxy-8-diethylaminooct-6-yne-3-one (7a). A mixture of alkyne 1 (4.48 g, 0.02 mol), paraform (0.5 g, 0.02 mol), CuCl (0.02 g, 0.02 mol), and diethylamine (1.46 g, 0.02 mol) in dioxane (50 mL) was stirred for 3 h at 50 °C. The product was isolated as described above for compound 7d to afford 4.4 g of 7a.

The yields, constants, elemental analysis data, and ¹H NMR spectra of β -diketones 7a—g are given in Table 1.

References

- 1. A. S. Zanina, S. I. Shergina, and I. E. Sokolov, in *Mezhfaznyi kataliz, novye idei i metody* [*Phase Transfer Catalysis, New Ideas and Methods*], Moscow, 1994, 31 (in Russian).
- 2. N. Bohlman, Angew. Chem., 1955, 67, 389.
- E. K. Andrievskaya and I. L. Kotlyarevskii, Izv. Akad. Nauk SSSR, Ser. Khim., 1970, 2809 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1970, 19 (Engl. Transl.)].
- L. B. Fisher, Usp. Khim., 1958, 27, 578 [Russ. Chem. Rev., 1958, 27 (Engl. Transl.)].
- D. Gibson, B. F. G. Johnson, and J. Lewis, J. Chem. Soc. A., 1970, 367.
- J. L. Dumont, A. Metge, W. Chodkiewicz, and P. Cadiot, Compt. Rend., 1965, 260, 215.
- R. I. Kruglikova, G. R. Kalinina, and P. S. Leonova, Zh. Org. Khim., 1966, 2, 1155 [J. Org. Chem. USSR, 1966, 2 (Engl. Transl.)].

Received October 12, 1995

A synthesis of chlorofluoro(N-trimethylsilyl)imidophosphates

S. I. Zavorin, * S. A. Lermontov, and I. V. Martynov

Institute of Physiologically Active Substances, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation

Reaction of bis(trimethylsilyl) amidofluor ophosphites with the derivatives of trichloroacetic acid affords chlorofluor o(N-trimethylsilyl) imidophosphates.

Key words: chlorofluoro(*N*-trimethylsilyl)imidophosphates; bis(trimethylsilyl)amidofluorophosphites, ethyl trichloroacetate, trichloroacetonitrile, reactions.

Halo(N-trimethylsilyl)imidophosphates (N-trimethylsilyl-P-halophosphazenes) are of interest as the intermediates in the synthesis of various phosphazenes and polyphosphazenes. 1,2

We have shown previously that the "halophilic" reaction of bis(trimethylsilyl) amidophosphites with the derivatives of trichloroacetic acid is useful for the synthesis of compounds of such type. In the present work, it is found that in the case of bis(trimethylsilyl) amidofluorophosphites, this reaction affords the poorly studied chlorofluoro(N-trimethylsilyl) imidophosphates. Thus, the reaction of bis(trimethylsilyl) amidofluorophosphites 1–3 with CCl₃CN gives phosphazenes 4–6, respectively, whereas in the reactions with CCl₃COOEt, the desired product 4 is formed only from phosphite 1.

Compounds 4-6 are colorless, nonviscous liquids furning on air. Even when thoroughly protected from the moisture of air, they turn brown after several hours. The

$$R-P = \begin{cases} N(SiMe_3)_2 & \frac{CCl_3CN}{or} & R \\ F & \frac{CCl_3COOEt}{cCl_3COOEt} & F \end{cases}$$

1, 4: R = Et₂N 2, 5: R = Pr¹O

3, 6: R = BuiO

composition and structure of compounds **4**—**6** were established by the elemental analysis data and ¹H, ¹⁹F, and ³¹P NMR and IR spectroscopy (Table 1) and mass spectrometry.

One can assume that the considered reaction proceeds via the stage of the positive halogen atom abstraction; this pathway was proposed previously by us for the silylated derivatives of phosphorous acid.³

$$\begin{array}{c} \text{Me}_3\text{Si} \\ \text{Ne}_3\text{Si} \\ \text{Ne}_3\text{Si} \\ \text{SiMe}_3 \\ \text{Ne}_3\text{SiMe}_3 \\ \text{R-P-CI} \\ \text{F} \end{array}$$

Experimental

The ¹H, ¹⁹F, and ³¹P NMR spectra were recorded with a Bruker CXP-200 spectrometer using SiMe₄, CF₃COOH, and 85 % H₃PO₄ as the standards, respectively. The IR spectra were recorded with a Specord IR-75 instrument in a liquid film between KBr plates. The mass spectra (EI, 70 eV) were registered with a Finnigan MS 4021 mass spectrometer.

Diethylamidochlorofluoro (N-trimethylsilyl) imidophosphate (4). A. A solution of CCl₃CN (2.66 g, 18 mmol) was added dropwise to a stirred solution of diamidophosphite 1 (4.97 g, 18 mmol) in anhydrous Et₂O (15 mL) upon cooling (-10 °C). The mixture was stirred at -10 °C for 0.5 h and then at 20 °C for 1 h. The reaction mixture was evaporated to a minimum volume, the residue was distilled, and compound 4 was obtained in 79 % yield, b.p. 71–73 °C (10 Torr). Found (%): C, 35.01; H, 7.80. C₇H₁₉ClFN₂PSi. Calculated (%): C, 34.35; H, 7.82. MS, m/z (I_{rel} (%)): 247 [M+2]⁺ (100), 229 (50).

B. Analogously, imidophosphate 4 was obtained in 85 % yield from the equimolar amounts of diethylamidophosphite 1 and CCl₃COOEt.

Isopropylchlorofluoro(*N*-trimethylsilyl)imidophosphate (5) was synthesized analogously from amidophosphite 2 (20 mmol) and CCl₃CN in 69 % yield, b.p. 47–50 °C (10 Torr). Found

Table 1. ¹H, ¹⁹F, and ³¹P NMR and IR spectral parameters for chlorofluoro(*N*-trimethylsilyl)imidophosphates 4—6

Com		δ ¹⁹ F	δ ³¹ P	I _{J_{P,F} /Hz}	v(P=N) /cm ⁻¹
4	0.09 (d, 9 H, ${}^{4}J_{H,P} = 0.9$); 1.13 (t, 6 H, ${}^{3}J_{H,H} = 7$); 3.14 m (4 H)	44.57 (d)	-10.00 (d)	1023	1400
5	0.3 (d, 9 H, ${}^{4}J_{H,P} = 1$); 1.6 (dm, 6 H, ${}^{3}J_{H,H} = 6$); 5.0 (m, 1 H)	44.57 (d)	-22.06 (d)	1042	1411
6		41.63 (d)	-20.74 (d)	1041	1413

(%): H, 7.19. $C_6H_{16}CIFNOPSi$. Calculated (%): H, 6.96. MS, m/z (I_{rel} (%)): 232 [M]⁺ (100), 218 (20), 216 (60), 174 (90).

Isobutylchlorofluoro(N-trimethylsilyl)imidophosphate (6) was synthesized analogously from amidophosphite 3 (20 mmol) and CCl₃CN in 20 % yield, b.p. 85—90 °C (27 Torr). Found (%): H, 7.32. C₇H₁₈CIFNOPSi. Calculated (%): H, 7.38. MS, m/z (I_{rel} (%)): 246 [M]⁺ (100), 230 (30), 204 (1), 174 (40).

References

- P. Wisian-Neilson and R. H. Neilson, *Inorg. Chem.*, 1980, 19, 1875.
- R. H. Neilson and P. Wisian-Neilson, Chem. Rev., 1988, 88, 541.
- S. A. Lermontov, S. I. Zavorin, I. I. Sukhozhenko, A. N. Pushin, and I. V. Martynov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, 468 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 404 (Engl. Transl.)].
- Yu. G. Gololobov, N. I. Gusar', and L. V. Randina, Zh. Obshch. Khim., 1982, 52, 1260 [J. Gen. Chem. USSR, 1982, 52 (Engl. Transl.)].

Received October 30, 1995; in revised form January 18, 1996